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Team Goals

* Provide a flexible, data driven
bioinformatic modeling environment that
assists users in:

— Integrating diverse sources of data
— Interpreting large data sets
— Making quantitative predictions

Key modeling tool: Bayesian Networks
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Bayesian Networks: General

» Bayesian describe causal or apparently causal

relationships

If (weight A =up & procedure=sham) then P(ALT=low)=0.6
weight P(ALT)

A procedure |high low

orocedureup sham 0.4 0.6
down sham 0.1 0.9

up treatment |0.98 0.02
down treatment |[0.80 0.20
up control 0.05 0.95
down control 0.001 0.999
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Bayesian Networks: General

 Bayesian networks are another way of expressing
conditional probabilities

A model

How can we automatically
find which model fits the
data best?
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Bayesian Networks: General

Model fit assessed with Bayes’ Rule:
P(Model | Data) = P(Data | Model) P(Model) / P(Data)

P(Data | Model): evaluated using probability theory

P(Model): prior probability for each models or set of features

P(Data): probability of this particular data set given all other
possibilities and knowing nothing of the model.

Goal: find the candidate structure that maximizes

+. the Bayes score, log( P(Model | Data) )
NC:BI
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Bayesian Networks: Searching

P(Model 1 | Data)=0.0754 P(Model 2 | Data)=0.0129

P(Model 1 | Data) > P(Model 2 | Data)
Model 1 fits the data better
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Three Modeling Directions

1. Biomarker Identification
2. Static Bayesian Networks
3. Dynamic Bayesian Networks
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Biomarker Identification

GOAL.: Identify maximally relevant combinations of
nonlinear predictors of any biological outcome.

2 — * Correlation methods
10 | —W—biomarker 2 identify linear
relationships (#1), but
can’t find nonlinear

relationships (#2)

e Many useful markers are
likely nonlinear

e Short lists of biomarkers
NC:BI are often better
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Biomarker Identification

« MARKIT uses a Bayesian network engine to identify
biomarkers from hundreds of thousands of variables
for 2 parents, or tens of thousands for 3 parents.

Beta Software available at:
http://www-personal.umich.edu/~welchr/biomarker/
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Biomarker Identification

Example 1: Molecular differential Q?’

diagnosis of bipolar &
schizophrenia

- 68 Affymetrix profiles of Blpolar’?
neutrophils from patients
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Static Bayesian Networks

GOAL: Identify mechanistic pathways from data and
user experience.

Focus area: Chinnalyan data to identify plausible
mechanisms in prostate cancer
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Data Integration:
Promises and Pitfalls

 Most modeling efforts focus on a single data type

Data MRNA Model
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Data Integration:
Promises and Pitfalls

 Integrating more data makes the model more
complete and complex

Data
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What does this mean?
What is the mechanism?

MRNA, protein Model
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Data Integration:
Data Types

e Two kinds of are data possible:
Observational: Relational:

Shows what Constrains what
does happen could happen.
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Data Integration:
Data Types

Relational data: Limits which mechanisms
are possible.

* Which proteins can form complexes?

* Which proteins can phosphorylate
which targets?

 Which transcription factors can regulate
which targets?

= MiMI, NLP, GeneGo
NC:BI
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Observational Data Relational Data
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Observational Data Relational Data
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Bubble

Java interface for learning, modifying, and interpreting
Bayesian networks

Beta version online:
http://sysbio.engin.umich.edu/~mirka/startappl.jnlp

OR
http://werewolf.engin.umich.edu:8080/
(less flexible, but more reliable)
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User login

Select project

Define network
learning
parameters

Select data

Define
connections that
must or must not
be present

Perform network
search

Store top
1000 scoring
networks
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Modeling Feedback to User

User login

uggest additional nodes

to include in analysis ol el

Select project

v

Define network Ask for user input for Modify prior
learning Select data ost informative feature probabilities
parameters

Define
connections that
must or must not
be present

Update data set
with new
experimental data

Suggest the next best
experiment to run

Update current
data set with
additional data

Suggest additional
relevant data sets

Perform network
search

Visualize top Predict the activity/ Visualize
scoring networks expression level changes consensus
Store top 9 due to perturbations network
1000 scoring

networks

_—
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Dynamic Bayesian Networks

GOAL: Learn apparently causal mechanisms from
temporal data (when we have it)
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Dynamic Bayesian Networks

Unrolled Network Collapsed Network
Yesterday Today
(ti1) (t;)
ALT ALT ALT 4—prOCEdU re
‘ OR SR survival

procedure procedure

These are both examples of

survival survival Dynamic Bayesian Networks
weight weight (DBNs)
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* Predictions can explore future alternatives
Unrolled Network

Yesterday
(t.) Today 6o |
(ti) 140 | —0—0Observed
ALT ALT . —-treatment 1

treatment 2

. 100 - treatment 3

80 - 1

procedure 60 - |
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MiniTUBA

Web interface for learning and visualizing Dynamic
Bayesian Networks

http://www.minituba.org/

YY) miniTUBA: Medical Inference by Network |...f Temporal Data Using Bayesian Analysis

| < e ||+ | @ ntp://www.minituba.org/ ~ Q-

[I] Apple(179)v Amazon Weather eBay News (868)v iGEM.Registry Artists v Yahoo »

university of Michigan  M@dlical Inference by Network Integration of
N Oputns Temporal Data Using Bayesian Analysis

Home Sandbox/Demo Site  Sepsis/Liver Disease Study Documentation FAQs

Welcome to miniTUBA

In biomedical research and clinical studies, experimental data are often collected across time over
a number of similar trials or experimental units. It is often important to know if an intervention or an
adverse event (e.g. a drug treatment or a pathogenic infection) would affect the distribution of data
over time, and if so, in what manner. Bayesian networks represent a powerful method for



Top Scoring Dynamic Bayesian
Network

Top scoring network
P(M|D)~ 0.9998
Networks searched: >2 billion



Dynamic Bayesian Network
Conserved Edges

) 153

Connections present in all of the top 30 network structures.
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Example Relationship: Lymphocytes
(LY) and Neutrophils (NE) predict
white blood cells (WBC)

CORCOIE,
35
lT 30
o =
= SR
e el tes T _m . * LY.low
Approximate 1o ) ‘:.3.‘{.:‘;" T et rLYhigh
I‘U|e 10 T LA S,
5 |
If(K*NE>WBC) Oo P 10 20 30 40 50
then LY=low ® L
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DBNs for clinical and experimental research:
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User enters data as
they are gathered
Into a web based
form

Model suggests treatment that maximizes survival
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and adapt based on all of the data
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Questions?
To try the tools out go to:

Bubble:
http://sysbio.engin.umich.edu/~mirka/startappl.jnlp

http://werewolf.engin.umich.edu:8080/
MIiNniITUBA:

http://www.minituba.org/

Bayesian Biomarker ID:
http://www-personal.umich.edu/~welchr/biomarker/

Or email me:
NCiBI pwoolf@umich.edu
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Corrections:

* Find a way to set up for Matthias as the final punch

* Provide example from Bubble for Chinnayn data (how to use?)
* Color graph to show how this stuff works out.

Updates:

Start out with a vision both of how it is and how it should be. Then show how it works.
Biomarkers--fusion, and MclInnins, and Feldman

Transcriptional networks--how do they work?

Bubble to DOOBN

*DBN

eInclude email, focus on DBPs

*“Biology is an information science” by lee hood

 TF regulation of gene expression

ealanine transaminase=ALT test

*Ricardo Del Faveo in Colloumbia to study B-cell lymphoma. (working with Adndreas)
«-lots of different geen expression data a
Do D%T__E;is/-really drive the computation, or is it something else?

thit gical discovery” and “biological modeling” are seen as different. Maybe this is my bioinformatics vs systems biology.

1 b H L H
CuU Via WIRAI as a ITicuriidarisirt.
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